Improved Variants of Young, Heinz, and Hölder Inequalities for Matrices
نویسنده
چکیده
In this talk we deal with a more precise estimates for the matrix versions of Young, Heinz, and Hölder inequalities. First we give an improvement of the matrix Heinz inequality for the case of the Hilbert-Schmidt norm. Then, we refine matrix Young-type inequalities for the case of Hilbert-Schmidt norm, which hold under certain assumptions on positive semidefinite matrices appearing therein. Finally, we give the refinement and the reverse of the matrix Hölder inequality which holds for every unitarily invariant norm. As applications, we also obtain improvements of some well-known matrix inequalities in a quotient form. Our results are compared with the previously known from the literature.
منابع مشابه
Improvements of Young inequality using the Kantorovich constant
Some improvements of Young inequality and its reverse for positive numbers with Kantorovich constant $K(t, 2)=frac{(1+t)^2}{4t}$ are given. Using these inequalities some operator inequalities and Hilbert-Schmidt norm versions for matrices are proved. In particular, it is shown that if $a, b$ are positive numbers and $0 leqslant nu leqslant 1,$ then for all integers $ kgeqsl...
متن کاملA note on the Young type inequalities
In this paper, we present some refinements of the famous Young type inequality. As application of our result, we obtain some matrix inequalities for the Hilbert-Schmidt norm and the trace norm. The results obtained in this paper can be viewed as refinement of the derived results by H. Kai [Young type inequalities for matrices, J. Ea...
متن کاملSingular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملFurther inequalities for operator space numerical radius on 2*2 operator matrices
We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$, when $X$ is a numerical radius operator space. These inequalities contain some upper and lower bounds for operator space numerical radius.
متن کاملSOLUTION-SET INVARIANT MATRICES AND VECTORS IN FUZZY RELATION INEQUALITIES BASED ON MAX-AGGREGATION FUNCTION COMPOSITION
Fuzzy relation inequalities based on max-F composition are discussed, where F is a binary aggregation on [0,1]. For a fixed fuzzy relation inequalities system $ A circ^{F}textbf{x}leqtextbf{b}$, we characterize all matrices $ A^{'} $ For which the solution set of the system $ A^{' } circ^{F}textbf{x}leqtextbf{b}$ is the same as the original solution set. Similarly, for a fixed matrix $ A $, the...
متن کامل